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A response mechanism is the component of any model
of human decision making that takes evaluations of the
importance of potential actions and selects the most suit-
able action. Despite appearances, the design of a biologi-
cally plausible switching mechanism is a nontrivial prob-
lem (Redgrave, Prescott, & Gurney, 1999). In this article,
we argue that response mechanisms are an important part
of cognitive models, that their function is an important
area for investigation, and that the processes of the re-
sponse mechanism have consequences for performance
in diverse areas of human behavior. The importance of
the study of response mechanisms is highlighted by the
emergence of the topic in disciplines apart from cognitive
psychology. Thus, ethology, robotics, and neuroscience
have come to recognize the importance of the “action se-
lection problem” (Prescott, Redgrave, & Gurney, 1999;
Tyrrell, 1992). From these perspectives, a response mech-
anism is necessary to deal with the resolution of conflicts
between functional units that are in competition for be-
havioral expression. For example, a food-deprived animal
should reevaluate the importance of feeding if a predator
is detected, thereby requiring a response selection to the
new stimulus (e.g., continue feeding, flee, or fight).

Appropriate behavioral selection is also clearly an
issue of central importance to cognitive psychologists,

but response mechanisms have generally not received
their due emphasis. All cognitive models must explicitly
or implicitly contain a response mechanism. In many for-
mal models, this may be no more than a simple threshold,
above which activations indicate a response. Even such a
minimal feature fulfills the role of the response mecha-
nism, although this kind of mechanism is functionally
impoverished (Ratcliff, Van Zandt, & McKoon, 1999;
Stafford, 2003). A response mechanism should be de-
signed to cope with the multiple, conflicting demands of
the behaving organism (Redgrave et al., 1999). Some-
thing about the way these demands are reconciled in hu-
mans may be shown by studies of reaction times in tasks
such as the Stroop task (Stroop, 1935) and other simple
choice paradigms (Luce, 1986). Conversely, of course,
the study of response mechanisms and of the action se-
lection problem should illuminate facets of performance
in these paradigms.

Within cognitive psychology, the study of response
mechanisms in their own right has largely been restricted
to the modeling of decision mechanisms that can mimic the
pattern of reaction time in simple choice paradigms (Luce,
1986; Ratcliff & Rouder, 1998). Furthermore, although
response mechanisms have been studied in this “choice
theory” context, little is known about the brain regions
where they might be instantiated, nor has there been an
attempt to create models based on neurophysiological
principles or constrained by known neuroanatomy.

The significance of response mechanisms has been
raised by a recent discussion that made it clear that mod-
els of decision mechanisms inspired by different research
paradigms have convergent properties (Ratcliff, 2001;
Reddi & Carpenter, 2000). The comparison of these dif-
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ferent models raises general issues in the study of deci-
sion making, such as the issue of exactly which stage of
processing the response mechanism is modeling (Car-
penter & Reddi, 2001).

The starting point for the investigation of response
mechanisms presented in this article is the popular model
of the Stroop task described by Cohen, Dunbar, and Mc-
Clelland (1990), henceforth the “Cohen model.” This is
a connectionist implementation of the hypothesis that
performance in the Stroop task can be understood with
the concepts of automatic and controlled processes, which
are distinguished in the model through different “strengths
of processing” within two paths with differently weighted
connections. The Cohen model remains the “standard”
model of Stroop processing (e.g., Ellis & Humphreys,
1999; MacLeod & MacDonald, 2000). The model cap-
tures the essential generic features of the processing of
conflicting stimuli in a connectionist framework, but its
simplicity can be deceptive. The correct explanation for
the behavior of the model (and, thus, in turn for human per-
formance) may not be immediately apparent. We present
here an investigation into which mechanisms in the model
may explain the successful simulation of Stroop phenom-
ena, particularly those of interference and facilitation.

We show that the full explanation of Stroop performance
by the Cohen model must involve the hitherto neglected
response mechanism. In doing so, we demonstrate that the
temporal relationship between this mechanism’s input and
output (reaction time) is analogous to Piéron’s law (Piéron,

1914, 1920, 1952). We therefore go on to investigate the re-
lation between other response mechanisms (Gurney,
Prescott, & Redgrave, 2001a; Phaf, Van der Heijden, &
Hudson, 1990; Ratcliff, 1978; Reddi & Carpenter, 2000)
and Piéron’s law. One such mechanism is consistent with
neuroscientific constraints because it can be identified
with a set of specific neuroanatomical structures (the basal
ganglia) and has been the subject of a computational model
of action selection (Gurney et al., 2001a, 2001b). We go on
to examine the underpinning of a Piéron-like law in this
mechanism and its relation to neural functionality.

The Stroop Task
The Stroop task (Stroop, 1935) is a popular paradigm

for investigation of the cognitive mechanisms involved
in attention, automaticity, and, most important for us, the
processing of conflicting stimuli and conflicting re-
sponses (for reviews, see MacLeod, 1991, and MacLeod
& MacDonald, 2000). The Stroop color-naming task in-
volves responding to the color of a colored word string
which can itself be the name of a color. There are three
possible general classes of stimuli. For congruent stim-
uli, the word and the color match (e.g., the word red in
red ink), for conflicting stimuli, the word and the color
are at odds (e.g., the word red in green ink), and for con-
trol stimuli, the irrelevant dimension is, at least nomi-
nally, neutral with regard to the target dimension (for ex-
ample, the string XXXX in green ink, or the word chair
in green ink). Typical response times for all conditions

Figure 1. The basic Stroop effect for color naming with nonword control. Note: In-
terference is greater than facilitation. (Data are from Dunbar & MacLeod, 1984,
p. 630.)
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when using nonword control stimuli (such as XXXX) are
shown in Figure 1 (Dunbar & MacLeod, 1984). This
baseline condition is chosen to provide data because it is
the one used in the Cohen model.

The main feature of Stroop task response time data is
that the word dimension of the stimulus affects the speed
of color naming although, in the complementary word-
reading task, the color dimension does not significantly
affect the speed of word reading. This has traditionally
been interpreted within an automaticity framework (e.g.,
Posner & Snyder, 1975) in which the reading of the words
occurs automatically, despite the influence of attention,
and affects the naming of colors. Recent results show
that word reading is not automatic, and words can be suc-
cessfully ignored if the task conditions are right (Besner,
2001; Besner, Stolz, & Boutilier, 1997; Durgin, 2000).
Results such as these support a general deconstruction of
the notion of automaticity (Bargh, 1989; Duncan, 1986;
Logan, 1988; Pashler, 1998; Ryan, 1983). One novel as-
pect of the Cohen model was that it showed how notions
of the conditional and quantitative nature of what have
previously been considered automatic processes may be
naturally incorporated within a connectionist framework.

A second feature in Stroop data with nonword control
stimuli is the asymmetry of the influence of congruent
versus incongruent information in the color-naming task.
The interference effect on reaction times produced by
conflicting color-words is greater than the facilitation ef-
fect produced by congruent color-words. The Cohen
model provides an explanation of this asymmetry, and
this explanation is the point of departure for our analysis
of response mechanisms.

The preceding discussion indicates the wide-ranging
extent of the explanatory power of the Cohen model,
which may account for its receiving considerable atten-
tion. This model therefore deserves close scrutiny in
order to understand the mechanisms responsible for its
properties.

A Model of the Stroop Effect
The model of processing in the Stroop task advocated

by Cohen et al. (1990) consists of a parallel distributed
processing (PDP) network (Rumelhart, McClelland, &
the PDP Research Group, 1986), which processes the
raw stimulus characteristics and then provides outputs
for a response mechanism. The model simulates a two-
color Stroop task with nonword control (e.g., XXXX in
the relevant color) and has two output nodes correspond-
ing to the two possible responses (red and green, say).
The response mechanism is based on an accumulator
model of the kind used to simulate reaction times in sim-
ple choice situations (Luce, 1986). The relative evidence
in favor of each competing response is accumulated in its
associated “bin” (in our example, one for red, one for
green) until the crossing of a threshold by the value of
one bin signals a response. Although, as we will show,
the response mechanism is an important functional part
of the Cohen model, it is rarely discussed in reviews of

the model (Ellis & Humphreys, 1999; MacLeod, 1991;
MacLeod & MacDonald, 2000).

Cohen et al. (1990) base their explanation of the ratio
of interference to facilitation on the properties of the
function relating input to output in the individual units of
the network. Like many other PDP models, the units in the
Cohen model use a logistic activation function to relate
the weighted sum of inputs (“net input”) in a unit to its
output. The logistic function limits each unit’s output, y,
to lie between 0 and 1 according to the rule

where x is the net input. According to Cohen et al. (1990),
this function is the source of the asymmetry between in-
terference and facilitation effects. The basis of their ex-
planation (shown graphically in Figure 2A) is that, rela-
tive to a control condition baseline greater than zero,
decreasing the input by a certain amount Δ x produces a
larger change in output than a similar increase in input
of Δ x.

This explanation is also used to support the view that
interference and facilitation are products of the same
mechanism (Cohen et al., 1990; Cohen, Servan-Schreiber,
& McClelland, 1992)—a matter we return to in the Dis-
cussion section. This explanation accompanies the exposi-
tion of the model in textbooks (e.g., Ellis & Humphreys,
1999; Sharkey & Sharkey, 1995) and critical reviews
(notably, MacLeod, 1991). However, close examination
of the explanation illustrated in Figure 2 shows that it is
contingent on the activity in the neutral condition falling
above the inflection (midline) point of the curve. Cohen
et al. (1990) do not provide a justification for their as-
sumption that the unit input in the neutral condition falls
above the inflection point of the sigmoid function. In-
deed, in our replication of their reported model the unit
input in the neutral condition falls just below, rather than
above, the inflection point. That the simulations still pro-
duce interference effects greater than facilitation effects
is an indication that the sigmoid function cannot be re-
sponsible for this effect in this particular model.

The True Locus of the Interference–Facilitation
Asymmetry Lies in the Response Mechanism

Simulations show irrelevance of the unit activation
function nonlinearity. In order to demonstrate that the
nonlinearity of the activation function alone cannot ex-
plain the difference between interference and facilitation
in the Cohen model, we present two simulations: One is
a replication of the original model, and the other is iden-
tical but uses a piecewise linear activation function in-
stead of a logistic activation function (see Figure 2B).
The rationale for this is that, since the slope of the region
of interest of the piecewise linear function is constant, it
ceases to be the case that increases in a unit’s net input
(associated with facilitation) result in smaller output
changes than decreases in the net input (associated with
interference). The piecewise linear function possesses
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the essential “squashing” nonlinearity of the logistic
function but with a simpler description; it is defined by

where ε determines the position of the function on the 
x-axis, and m the slope of the strictly increasing part. We
used values m � 0.2 and ε � �2.5 to approximate the
shape of the logistic sigmoid used in the original formu-
lation of the Cohen model. Both simulations (sigmoid
and piecewise linear activation) used the posttraining
weights given in Cohen et al. (1990).

The results (Figure 3) show that both simulations yield
essentially the same pattern of reaction times. At this
stage, the argument given by Cohen et al. (1990) is still
potentially valid if the piecewise linear function saturates
during the network operation. However, we observed this
not to be the case, and all unit outputs were exercised
over the strictly increasing part of the function. The sim-
ilarity of the results, using the different activation func-
tions, therefore shows that the decreasing slope of the lo-
gistic function cannot be the source of the difference
between interference and facilitation.

Further insight is gained by inspecting the effect the
different activation functions have on the unit outputs that
are provided to the response mechanism. The response
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Figure 2. The logistic activation function (A) and the piecewise linear acti-
vation function (B) with annotation showing how excitation (E) and inhibition
(I) of the baseline input affect output. The effect of equal excitation and inhi-
bition is asymmetrical for the logistic function, the putative source of the dif-
ference between interference and facilitation, and symmetrical for the piece-
wise linear function.
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mechanism of the model calculates reaction times based
on the relative strength of evidence—namely, the differ-
ence between the target and competing outputs of the
network. The inputs to the response mechanism, calcu-
lated from the outputs of the model with the weights and
parameters given in Cohen et al. (1990), are shown in
Table 1. Two things should be noted: first, the outputs
for the word-reading conditions are not shown, because
they do not vary significantly between conditions or
models and are not relevant to the discussion of the point
at hand; second, these are the values close to their asymp-
totes at equilibrium—we deal with dynamical issues
later. These response mechanism input values are in no
way chosen by us, but result from the design of the model
by Cohen et al. (1990) with only the activation function
changed as described.

Two points may be made from an inspection of Table 1
and Figure 3. First, there is a small difference (0.04) in
relative evidence for interference and facilitation with
the logistic activation function, and this difference will
promote the required asymmetry. However, it has a neg-
ligible effect on reaction times, because the model with
piecewise linear activation has no difference in relative
evidence but produces a very similar pattern of results
(Figure 3). Second, although the piecewise linear model
produces symmetric inputs to the response mechanism,
there is still an asymmetry in reaction time differences

(with respect to control). This means that the equilibrium
values of the network output cannot be responsible for
the asymmetry; there is no network-bound “symmetry
breaking” via equilibrium outputs. Notice that the sym-
metry in strength of evidence relative to control here is
contingent, not only on the piecewise linearity of the
node output function, but also on symmetries in the pat-
terns of input to the final stage of network processing.
Thus, while the strictly increasing part of the piecewise
linear activation function can (unlike the sigmoid) faith-
fully transmit symmetric differences in net input to nodes
in the output layer, such a difference must be in place for
this to occur. The architecture and training of the Cohen
model both conspire to ensure that this is the case.

Furthermore, Cohen et al. (1990) claim that the time
constant for leaky integration in the artificial neurons of
the model also played a role in determining the asym-
metry between interference and facilitation. However,
we have found that removing the neuron temporal dy-
namics altogether, so that their outputs change instanta-
neously, has a negligible effect on the simulation results.
Given the above observations, neither network dynamics
nor equilibrium properties can be held responsible for
the asymmetry in facilitation and interference. This means
that the locus of the asymmetry must, for this particular
model, lie in the response mechanism; it remains to be
seen exactly what feature of the response mechanism
creates this phenomenon.

A response mechanism that follows an analogue of
Piéron’s law produces the asymmetry between inter-
ference and facilitation. In the Cohen model, the unit
outputs for the two competing responses are passed from
the connectionist part of the model to the response mech-
anism, which is based on evidence accumulation. In a
basic version of this scheme, each of the two possible de-
cisions (red and green, say) is associated with an evi-
dence bin and, at each time-step, each bin has its value
altered by an amount proportional to the difference be-

Figure 3. Reaction times on the color-naming task for our replication of the original Cohen, Dunbar, and Mc-
Clelland (1990) model, using the original logistic activation function (A) and a piecewise linear activation func-
tion (B). The empirical data is accurately simulated with both activation functions.

Table 1
The Strength of Evidence for Target Response in the 

Three Color-Naming Conditions for Models Using the 
Two Activation Functions

Logistic Function Piecewise Linear Function

Strength of Strength of
Condition Evidence Change Evidence Change

Control 0.48 0.46
Conflict 0.27 �0.21 0.24 �0.22
Congruent 0.64 �0.17 0.68 �0.22
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tween the network output for its corresponding decision
and that of the alternative decision. Thus, introducing
decision indices i, j � 1,2, if μi is the change in evidence
for decision i, and yi the associated network output

μi � α ( yi � yj ),

where i � j and α is a scaling parameter less than 1 that
determines the rate of evidence accumulation. The bins
are initialized to zero at the start of each trial, and a de-
cision is signaled when the counter for either decision
crosses some threshold. Cohen et al. (1990, p. 338) fi-
nesse this basic scheme by adding zero-mean Gaussian
noise to the evidence μi before accumulating it in each
counter. In calculation of response time based on rela-
tive evidence, the response mechanism in the Cohen
model is similar to many other models of reaction time,
including those based on mathematical models of deci-
sion processes (e.g., Luce, 1986; Ratcliff & Rouder, 1998)
and on the neurophysiology of saccades (Reddi & Car-
penter, 2000).

The role of the response mechanism may be eluci-
dated by examining the functional relationship between
the reaction time (RT) and the strength of evidence E �
yi � yj , under the approximation that E is fixed for the
duration of the response. The resulting function is seen
in Figure 4, which shows that response time is a nega-
tively accelerating function of input. Increasing the rel-
ative strength of evidence above baseline for a decision
does not speed the response time as much as an equally

sized decrease slows response time. This is exactly what
is required to explain the fact that interference is greater
than facilitation in the Cohen model.

Further insight about this function may be obtained by
quantifying its analytic form. Let bi(n) be the value of
evidence in bin i at time step n. Without loss of general-
ity, assume that bin 1 forces a decision by reaching the
threshold θ. At each time-step, bin 1 is incremented by
αE so that b1(n) � nαE. Let nI be the smallest integer n
such that b1(n) 
 θ, then if αE is much less than θ (or
equivalently, n is much greater than 1), nIαE � θ. Re-
arranging and taking the log of both sides

log nI � log(θ/α)� log E. (1)

Now nI is proportional to RT, so RT � cnI where c is a
constant. Thus, Equation 1 may be written

log RT � log k � log E, (2)

where k � cθ /α. This is a special case of the more gen-
eral form

log(RT� R0) � log k � β log E, (3)

where β � 1, and R0 � 0. This, in turn, may be written as

RT � R0 � kE�β, (4)

which expresses the reaction time as an exponentially
decreasing function of the strength of evidence with an
asymptotic response time R0.

Figure 4. Response time as a function of strength of relative evidence in Cohen, Dunbar, and Mc-
Clelland’s (1990) response mechanism. The change due to increased intensity is greater than the
change due to decreased intensity.
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If strength of evidence is replaced by stimulus intensity,
Equation 4 corresponds to Piéron’s law which describes
an early finding from psychophysics that the intensity of
a stimulus is related to the latency of response by an expo-
nentially decaying function. Piéron’s law has been found
to hold for both visual and auditory stimuli (reviewed in
Luce, 1986), for gustatory reaction times (Bonnet, Zamora,
Buratti, & Guirao, 1999), and for simple and choice re-
action time tasks (Pins & Bonnet, 1996). From Equa-
tion 3, the law may be expressed in an affine (linear with
nonzero offset) form by plotting the log of the input
against the log of RT (minus the asymptotic value); the
resulting straight line has slope �β and intercept log k.
Straight-line plots of this kind provide (with careful in-
terpretation—see below) a convenient method of assess-
ing to what extent other functions follow a form analo-
gous to Piéron’s law. Such a plot for the Cohen et al.
(1990) response mechanism is shown in Figure 5.

The asymptotes for the data and Figures 5–8 were all
produced with a procedure outlined below. However, to
understand why we adopted this technique, it is neces-
sary to be aware, as Luce (1986) notes, that f itting
Piéron’s law to data provides “an estimation problem of
some delicacy.” An important factor is whether the fit is
carried out before or after the transformation to log–log
coordinates. The transformation to log–log coordinates
exaggerates the discrepancy between the data and the
best-fitting line at lower RTs. Hence fitting in log–log
space can provide the illusionary appearance of a better
fit. With this in mind, a Piéron-like curve, as defined in

Equation 4, was fitted to the data using the fminsearch
function from MATLAB Version 6.1. This is an uncon-
strained nonlinear optimization procedure that uses the
simplex search method (Lagarias, Reeds, Wright, &
Wright, 1998). The asymptotic value obtained was used
to plot the log of reaction time minus the asymptote on
the y axis, while the log of the input to the response
mechanism was plotted along the x axis. Functions that
fit Piéron’s law exactly produce straight lines when plot-
ted like this. The line shown on the graphs is the best-
fitting line that results from using the set of parameters
derived from this optimization procedure. For some plots,
the range of data used to derive the asymptote was longer
than the range of data shown. This was done in order to
more accurately derive the asymptotic value, which is the
major influence on the straightness of the line. When this
was the case, a second simplex search was done for the
range of data shown on the graph with the asymptotic value
fixed but the other two parameters, k and β, unconstrained.

The fit in Figure 5 is very good and is only limited by
the approximation invoked to obtain Equation 1. There-
fore, in the limiting case of very small time-steps, the
Cohen et al. (1990) response mechanism follows a Piéron-
like function exactly. We are not asserting that strength
of evidence is the same as stimulus intensity, but that
strength of evidence—the input to the Cohen response
mechanism—fulfils a role analogous to that of stimulus
intensity vis-à-vis the relation to reaction time.

To summarize, the differential magnitude of reaction
time change under facilitation and interference condi-

Figure 5. The input–response time function of Cohen, Dunbar, and McClelland’s  (1990)
response mechanism shown on a log–log plot. The line representing the fit to a Piéron-like
function is shown to fit the data points exactly. The best-fitting line and asymptote are de-
rived by the standard procedure as defined in the text.
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tions in the model may be attributed to the shape of a
function determined wholly by the response mechanism.
This function relates reaction time to differential evi-
dence between the outputs of the connectionist network
and fits a form described by Piéron’s law.

Other Response Mechanisms Obey Piéron’s Law
Having established that one popular model of the Stroop

effect relies on the fact that its response mechanism fol-
lows a function analogous to Piéron’s law, it is natural to
go on and ask: Is this an idiosyncrasy of the accumulator

Figure 6. The input–response time function for Phaf, Van der Heijden, and Hudson’s
(1990) response mechanism shown on a log–log plot. The best-fitting line and asymptote are
derived by the standard procedure as defined in the text.

Figure 7. The input–response time function for the basal ganglia selection model shown on
a log–log plot. The best-fitting line derived by the standard procedure (as defined in the text)
is shown as a solid line. The best-fitting line obtained after the transformation to log–log space
is shown as a dotted line.
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model utilized by Cohen et al. (1990), or do other models,
and other response mechanisms, also follow such a law?
We show below that a number of successful response
mechanisms, taken from different research fields, all fol-
low a Piéron-like form.

The SLAM model (Phaf et al., 1990) also successfully
simulates reaction times in the Stroop task. The type of
response mechanism it uses is a “sampling and recovery
procedure” (Raaijmakers & Shiffrin, 1981). At each
time-step, an output unit in the network is chosen (ac-
cording to a sampling distribution based on relative unit
activities) as a candidate for implementing a response
decision. If the chosen unit has index i and activation
ai(t), its probability Pi of forcing a response is given by

Pi (t) � 1 � e�ai (t).

To gain more insight, we now assume that (as with the
accumulator mechanism) the unit chosen for activation
is fixed and that its activation is constant over the re-
sponse time. There is then a fixed probability Pi that a
decision is made at each time-step. It is straightforward
to show that the expected reaction time 〈RT〉 is then just
1/Pi , so that

To see whether this could be expressed in a form of a
Piéron-like law, we sought values of R0, k, and β that
would allow 〈RT〉 to be expressed as function of ai in the
form given by Equation 4. These were found using the
nonlinear function fitting routine described above, and

the results are shown in Figure 6. Thus, the Phaf et al.
(1990) response mechanism follows Piéron’s law very
closely if we interpret the unit activation and the ex-
pected reaction time as the independent and dependent
variables, respectively.

Arguably the most successful mathematical model of
response times for two-choice decisions is the diffusion
model (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff
et al., 1999). This model belongs to the general class of
random walk models, which are closely related to accu-
mulator models such as that used by Cohen et al. (1990).
They differ mainly in that they contain only a single
counter or accumulator, which is incremented or decre-
mented toward positive and negative thresholds repre-
senting the two competing responses. Both classes of
models have a long history of investigation in the context
of choice reaction time studies (Luce, 1986). In the dif-
fusion models, within each trial, drift is stochastic. How-
ever, it is possible to define a mean drift rate as the mean
rate of approach to the threshold, and which may be con-
sidered to reflect the relative strength of evidence for a
response. Although a key strength of the diffusion model
is that it accounts for the distribution of response laten-
cies, we consider the model without the inclusion of
noise in order to more easily derive the input–mean re-
sponse time function.

A somewhat different model is termed LATER (linear
approach to threshold with ergodic rate; Reddi & Car-
penter, 2000) and uses a constant drift rate within each
trial but varies this rate randomly from trial to trial. This
model is based on studies of saccade generation latency

〈 〉 =
− −

RT 1
1 e a i

.

Figure 8. The input–response time function for a simple model neuron derived analytically,
shown on a log–log plot. The best-fitting line and asymptote are derived by the standard pro-
cedure as defined in the text.
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in humans and other primates (for reviews, see Gold &
Shadlen, 2001; Schall, 2001).

In both the diffusion and LATER models, the mean drift
rate r acts like the rate of evidence accumulation αE used
for the model of Cohen et al. (1990) with the result that
their generic form fits Piéron’s law almost exactly with
respect to r as the independent variable. Thus, these
models display a Piéron-like relation of exactly the same
form shown in Figure 5.

Biologically grounded decision mechanisms. In ad-
dition to models based on matching simulation results to
behavioral studies, we have also investigated a response
mechanism that is based on the neuroanatomy of a brain
system believed to play a crucial role in behavioral re-
sponse selection—the basal ganglia. The basal ganglia
are a subcortical complex of nuclei that we have pro-
posed fulfill the role of a “central switch” in mediating
behavioral action selection in vertebrates (Prescott et al.,
1999; Redgrave et al., 1999). Briefly, our model of the
basal ganglia (Gurney et al., 2001a, 2001b; Humphries
& Gurney, 2002) is based on the known connectivity and
neurotransmitter function of the nuclei of these brain cir-
cuits and upon the hypothesis that the system functions
as a central selection mechanism. Behaviors compete
with each other for expression, and the basal ganglia se-
lects those that are most urgent; that is, those with the
largest salience. It is important to realize that, unlike the
previous models described here, the basal ganglia model
is not based on an attempt to simulate the pattern of re-
action times in any particular context. Rather, it is based
on the proposed mechanisms of the biological systems
putatively contributing to them. Despite this, the basal
ganglia model also follows an approximation to Piéron’s
law (with respect to input salience), as shown in Figure 7.
In Figure 7, a dotted line is also shown, which was found
by fitting to the data in the log–log space. Although it
appears better than the fit found using our nonlinear op-
timization technique, it is an inferior fit in the untrans-
formed (nonlog–log) space (see the remarks above about
fitting to Piéron’s law).

It is possible to explain the trends observed for the
basal ganglia model reaction times by the functionality of
the units that make up the model. Like many other neural
network models (including that of Cohen et al., 1990),
the basal ganglia model consists of leaky integrator neu-
rons. Such model neurons represent the simplest possi-
ble approximation to a dynamic neural membrane and, in
a way similar to real neurons, adjust their output gradu-
ally to be commensurate with their input. To represent
the function of such a neuron formally, let I(t) and a(t) be
the input and activation of the neuron, respectively, at
time t. Then

(7)

where p determines a characteristic time constant τ �
1/p, and q is a constant that affects the overall influence
of the input. The dynamics mean that the neuron is con-

tinually integrating (“accumulating”) information over
time and therefore has some of the characteristics of the
response mechanisms discussed above. We can now de-
rive a relationship between the response time of the neu-
ron tθ and a constant input I, where tθ is defined as the
time for the activity a, to cross a critical threshold θ.
Suppose that the neuron is at rest and receives a step
input I at t � 0. It is then straightforward (see, for ex-
ample, Kaplan, 1952) to solve Equation 7 to obtain

(8)

When t � tθ , then a � θ. Substituting these into Equa-
tion 8 and solving for tθ in terms of I gives

(9)

This function is shown in Figure 8 together with a re-
gression line based on fitting Piéron’s law.

The similarity to the basal ganglia input–response
time function suggests that the essential characteristics
of the latter may reflect the basic response properties of
its component model neurons.

Discussion
Summary of results. We have demonstrated several

main results. First, certain features of the model of Cohen
et al. (1990) can only be properly understood if attention
is paid to the response mechanism. In particular, the
asymmetry between facilitation and interference in this
model is not a result of the choice of artificial neuron
output function (the sigmoid). In fact, the main contri-
bution to this asymmetry is not grounded at all in the
connectionist “front end” (either its equilibrium or dy-
namic aspects), but rather in the response mechanism.
Second, this mechanism follows a relation analogous to
Piéron’s law and, while the input to the response mecha-
nism is not stimulus intensity as such, it is an analogous
quantity—the “strength of evidence” supplied by the
front end. The asymmetry is then easily explained in
terms of the nonlinearity of the power law that describes
the Piéron-like, input–output relation of the response
mechanism. Third, several other response mechanisms
follow (at least approximately) a Piéron-like relationship
if their input (“drift rate,” “salience,” etc.) is interpreted
as the independent variable giving rise to a reaction time.
In particular, a decision mechanism based on the neuro-
biology of the basal ganglia also follows a Piéron-like
law even though it was not designed to explain RT data.
The underlying reason for this last mechanism behaving
as it does appears to reside in the dynamics of its neural
elements. Some of the possible consequences of these
results are now explored further.

The single-mechanism contention. Cohen et al.
(1990) make the claim that their model, unlike other theo-
ries of Stroop processing, demonstrates that the asymme-
try between interference and facilitation could stem from
the same mechanism. Our analysis of the Cohen model
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shows that this claim is still true of this model, although
we would now move the locus of the source of this asym-
metry to the response mechanism. Of course, whether
this is validated experimentally is another question. The
“single mechanism” explanation has been criticized on
empirical grounds because of evidence that shows that
interference and facilitation can be differentially af-
fected by experimental manipulations (MacLeod, 1998;
Tzelgov, Henik, & Berger, 1992) and that interference and
facilitation are not only created by separate processes but
at separate stages (Brown, 2003; Brown, Gore, & Carr,
2002; MacLeod, 1998; MacLeod & MacDonald, 2000).

Although this evidence appears to be at odds with the
model of Cohen et al. (1990), it is not impossible to con-
ceive of other models that could accommodate these
data. The architecture of the Cohen model is a specific
example of a feedforward network and, in particular, its
structure allows (with the piecewise linear activation
function) symmetric effects at the output layer under the
congruent /conflict manipulation (and which contributed
to the pattern of results shown in Table 1). In contrast, in
order to accommodate the data cited above, a model
would have to be flexible enough to allow two things.
First, unlike the Cohen model, the outputs alone should
allow asymmetric differential evidence between congru-
ent and conflict stimuli; this would permit the locus of
asymmetry to exist at more than one site (“front end”
and response mechanism). In such a model, it may also
be possible, of course, to account for the asymmetry en-
tirely in the front end and invoke a more linearly behav-
ing response mechanism. Second, the outputs should
allow the size of the interference effect to be manipu-
lated independently of that of facilitation. Although the
Cohen model may not be able to support these features,
a two-layer connectionist network can be constructed to
give any pattern of outputs in response to its inputs (Fu-
nahashi, 1989; Hornik, Stinchcombe, & White, 1989).
That is, a network could be built to support the required
pattern of “evidence” relationships described above and
which, in combination with a (possibly Piéron-like) re-
sponse mechanism, could account for a complex pattern
of data describing facilitation and interference in the
Stroop effect. However, the unbridled application of the
(essentially unlimited) computational power of networks
to model psychological data in this way has not been with-
out criticism (e.g., McCloskey, 1991). Thus, according
to the critics, using unstructured multilayer perceptrons,
one obtains a “black box” whose internal mechanisms
are not transparent, and whose relationship to psycho-
logical processes or anatomical loci is unclear. Now, in
spite of the possible shortcomings of the Cohen model
(in terms of its flexibility to explain the full range of data
pertaining to congruence and facilitation), it is not a
“black box” in the sense described above. Rather, it is
founded on the principle of implementing a well-defined
hypothesis—that automaticity and processing are de-
scribed in terms of their relative “strength of processing.”

To this extent, the model is to be commended, for its
being both constrained (by the hypothesis) and transparent
in its operation.

Lindsay and Jacoby (1994) also address the single-
mechanism controversy. Their analysis, based on a pro-
cess dissociation procedure (Jacoby, 1991), focuses on
the independent but co-occurring contributions of word-
reading and color-naming processes to interference and
facilitation. The two processes use different response
bases and this, combined with the different contributions
of the two processes in the conflict and congruent con-
ditions, produces the asymmetry between interference
and facilitation. As Lindsay and Jacoby note, their analy-
sis is compatible with parallel processing models such as
that of Cohen et al. (1990), and we suggest that this focus
on processes and mechanisms, grounded in quantitative
models, is the most fruitful perspective for advancing the
current debate.

Baseline effects. The discussion above notwithstand-
ing, it has been suggested that, under certain circum-
stances (use of noncolor-word control) interference is
not greater than facilitation. According to this account,
the use of an XXXX control pattern provides a baseline
that is faster than a noncolor-word control and thus ex-
aggerates interference effects at the expense of facilita-
tion effects (Brown, 2003; Brown, Gore, & Carr, 2002;
Brown, Joneleit, Robinson, & Brown, 2002; Brown,
Roos-Gilbert, & Carr, 1995). Baseline effects could be
accounted for by a model that took input from noncolor
words as well as color words, and in which noncolor-
word controls produce a strength of evidence (for input to
the response mechanism) less than the XXXX controls.
Clearly, this is outside the remit of the Cohen model.
However, the possibility that such a model could be con-
structed in principle is guaranteed using the same argu-
ments about the generality of two-layer networks in-
voked in the previous section. Once again, however, the
provisos outlined in the last section about the utility of
such a model (in terms of the transparency of its ex-
planatory power) will apply if one adopts a critical stance
vis-à-vis the kind of network that underlies it.

Piéron’s law and information integration at the
neuronal level. It is intriguing that several well-known
response mechanisms exhibit characteristics similar to
those of Piéron’s law. This points to the possibility that
any psychologically plausible response mechanism should
obey a law of this kind. However, this is not a deduction
from our results, and we have to admit the possibility
that entirely different (non–Piéron-like) relationships
could exist between the input of a psychologically vali-
dated response mechanism and its output.

In the biologically grounded basal ganglia model, the
particular shape of the Piéron-like function for the BG
model (shown in Figure 7) resembles that of the model
neuron function (shown in Figure 8). This gives some
support for the hypothesis that the Piéron’s law proper-
ties of the basal ganglia model are due to the properties
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of its fundamental units, rather than being an anomalous
result of the particular connectivity of the system. We
therefore conjecture that any system comprised of units
with the same dynamics as model neurons such as these
will follow a Piéron-like function. This raises the possi-
bility that Piéron’s law itself (as observed in human data)
may be based on the information integration properties
of individual neurons.

It is usually acknowledged that the function of neu-
ronal elements is substantially more complex than that
expressed Equation 7 which we use to model the units in
this paper. This would appear to argue against a simple
neural element explanation of Piéron’s law. However,
Koch (1999) points out that the complexity of multiple
nonlinear intraneuronal processes could combine to cre-
ate an approximately linear input to the mean firing rate
relationship. Thus, the function of some biological neu-
rons may be approximately equivalent to that of the units
described here. This, in turn, makes it at least plausible
that Piéron’s law could be grounded in the properties of
biological neurons.

This neuronal explanation of Piéron’s law supposes
that a system-level property (Pièron’s law) arises by pre-
serving a property of the system’s fundamental units of
construction involving significant interelement inter-
action. We call such an explanation “transparent.” This
can be contrasted with an explanation in which systems-
level properties do not exist at the system elemental level
but only emerge from the interaction of these compo-
nents. Transparent explanations may be more robust to
minor modifications of systems-level features of the
model than are emergent explanations.

The value of the biologically grounded action se-
lection perspective. The shift in locus of explanation for
the relative values of facilitation and interference in
Cohen et al.’s (1990) model of Stroop performance em-
phasizes the importance of response mechanisms for
cognitive tasks. Our view is that response selection in
such tasks is a special instance of the more general process
of behavioral action selection conducted by all animals
in a continuous fashion in their natural state (Prescott
et al., 1999; Redgrave et al., 1999). The problem of ac-
tion selection is therefore central to a study of human be-
havior, and so we are not surprised to find mechanisms
mediating its solution occupying a central place in un-
derstanding laboratory-based cognitive tasks. Further-
more, although existing models of the Stroop task use
abstract models of response selection crafted explicitly
to model reaction time data, our model of the basal gan-
glia (Gurney et al., 2001a, 2001b; Humphries & Gurney,
2002) is based on biological considerations and was con-
structed to solve the problem of selection. However, it
can successfully model a similar relation between reac-
tion times and salience as is displayed by other response
mechanism models between RTs and evidence or drift
rate. In addition, it formed the basis for proposing a pos-
sible neurally inspired explanation for this Piéron-like
relationship.

We have investigated the use of our basal-ganglia–based
response mechanism in models of the Stroop task whose
front-end networks are modified versions of those in
Cohen et al.’s (1990) original model (Stafford, 2003;
Stafford & Gurney, 2000). These hybrid models can suc-
cessfully replicate the basic patterns of Stroop data that
were simulated by the Cohen model, but they are also
able to deal more successfully with data from variable-
duration interstimulus interval experiments.

We believe that now is the time to look at how choice
theories might usefully be applied to more complex tasks,
how choice processes might work in conjunction with
other cognitive processes, and how existing models might
fit with models of other processes and be constrained by
neuroscientific evidence and the requirements of the ac-
tion selection problem. This work was unwittingly begun
by Cohen et al. (1990), who incorporated a standard choice
theory decision mechanism at the “back end” of their
connectionist model of automatic and controlled process-
ing in the Stroop task. We argue that it is timely to continue
this vein of investigation and to broaden the scope to in-
clude neuroscientific and ethological considerations.
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